Ll 'H'

NASA Contractor Report 181980
ICASE Report No. 90-6

ICASE

EFFICIENT ALGORITHMS FOR DILATED
MAPPINGS OF BINARY TREES

M. Ashraf Igbal

Contract No. NAS1-18107
January 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 236655225

Operated by the Universities Space Research Association

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-CR-1819R0) EFFICIENT ALGDRITHMS FOR N9G-17317
OGILATEG MAPPINGS OF BINARY TREES Final
Report (ICASF) 42 p CS5CL 12A

unclas

63/59 0264341

Efficient Algorithms for Dilated Mappings Of Binary Trees
M. Ashraf Iqbal
University of Engineering & Technology, Lahore, Pakistan

Abstract

_We address the problem of finding a 1-1 mapping of the vertices of
a binary tree onto those of a target binary tree such that the son of a
node on the first binary tree is mapped onto a descendent of the image
of that node in the second binary tree. There are two natural measures
of the cost of this mapping, namely the dilation costi.e. the maximum
distance in the target binary tree between the images of vertices that
are adjacent in the original tree. The other measure, ezpansion cost, is
defined as the number of extra nodes/edges to be added to the target
binary tree in order to ensure a 1-1 mapping. We describe an efficient
algorithm to find a mapping of one binary tree onto another. We show
that it is possible to minimize one cost of mapping at the expense of
the other.

This problem arises when designing pipelined Arithmetic Logic Units ~

for special purpose computers. The pipeline is composed of ALU chips
connected in the form of a binary tree. The operands to the pipeline
can be supplied to the leaf nodes of the binary tree which then process
and pass the results up to their parents. The final result is available
at the root. As each new application may require a distinct nesting
of operations, it is useful to be able to find a good mapping of a new
binary tree over existing ALU tree. Another problem arises if every
distinct required binary tree is known beforehand. Here it is useful to
hardwire the pipeline in the form of a minimal supertree that contains
all required binary trees.

This research was supported in part by NASA Contract NAS1-18107
while the author was resident at the Institute for Computer Applications
in Science & Engineering (ICASE), NASA Langley Research Center.

1 INTRODUCTION

We address the problem of finding a 1-1 mapping of
vertices of a binary tree onto those of a target binary tree
such that the son of one binary tree 1is mapped onto a
descendent of the image of that node in the other binary tree.
There are two natural measures of the cost of this mapping,
namely the dilation-cost i. e. the maximum distance in the
target binary tree between the images of vertices that are
adjacent in the other graph. The other measure i. e. the
expansion-cost, is defined as the number of extra nodes/edges

to be added into the target binary tree in order to ensure a

1-1 mapping.

This problem arises while designing the Arithmetic Logic
Unit for a proposed special purpose computer [1], & [2]. In
that computer, Navier-Stokes equations are solved using an ALU
pipeline. The pipeline is composed of ALU chips connected in
the form of a binary tree. Each chip has two data inputs for
the two operands and one data output for the processed result.
The operands to the pipeline can be supplied to the leaf or
intermediate chips of the binary tree, which then process and
pass the result up to their parents. The final result is
available at the ocutput of the root node of the binary tree.
The solution of each Navier-Stokes equation may require a

distinct interconnection of the chips.

Once an ALU pipeline in the form of a binary tree is
hardwired, it becomes essential to find the mapping of a new
binary tree, corresponding to an application not initially
considered in the design of +the pipeline, onto the ALU
pipeline. The following questions regarding the mapping of the

new binary tree onto the ALU pipeline, need to be answered:

1. Is it possible to find a mapping with zero dilation-cost

without altering the hardware structure of the ALU
pipeline?

2. If a mapping with zero dilation-cosi does not exist, is
it possible to find a mapping with minimal dilation-cost
but again zero expansion-cost? A mapping with non zero
dilation-cost means that the son of a node of the new
binary tree is assigned to a descendent (instead of a
son) of the image of that node in the target binary tree.
Under such conditions some additional nonleaf nodes of
the pipeline, will be required to pass the operands upto
their parents without any processiné. Such an assignment
will increase the number of stages in the pipeline but
this may have little impact if long vectors are being

processed and is, in any case, preferable to rewiring the

pipeline.

3. If the dilation-cost of the mapping found in (22 is
prohibitively large, what will be the expansion-cost of

the ALU pipeline in order to make the dilation-—cost

acceptable?

A new problem regarding the ALU pipeline arises if every
distinct binary +tree, corresponding to each Navier-Stokes
equation to be solved, is known before hand. Under such
conditions, it is useful to hardwire the pipeline in the form
of minimal super tree which contains all required binary
trees. This exercise will minimize the number of costly ALU
chips as well as save the cost of rewiring the pipeline.

An almost identical problem arises in the field of
parallel /pipelined processing where the modules of a tree
structured parallel program are 1o be assigned over tLhe
processors of a tree machine. The above mentioned constraint

Cthat the son of each node of the preogram binary tree should

[N T o U

always be assigned to a descendent of the image of that node
in the processor binary treed will greatly help in reducing
communication & synchronisation overhead§. In case the
communication cost of 1-1 mapping of the nodes of the program
binary tree onto the nodes of the processor graph is too high,

we are left with two options:

1> Add extra nodes to the processor graph in order to

reduce the communication overhead;

e Assign more than one program nodes to a processor so
that the reduced program binary tree nicely fits the

in@ended tree machine and the communication cost is

reduced.

Prior research in similar fields is conducted by many
researchers. Bokhari [3] has defined the mapping problem and
developed a heuristic in order to maximize the cardinrality of
mapping i. e. the number of pairs of communicating modul es
that fall on pairs of directly connected processors in an
eight nearest neighbour array. Igbal [4] has designed a
heuristic algorithm which works especially well for the
mapping of binary trees onto binary trees. Chung et al. [8B]
showed that in order to be able to embed any N-node binary‘
tree onto a complete binary tree with dilation-cost=1, the

expansion-cost of the target binary tree must be proportional

to N°9% Hong et al. [6] showed that there is a generic

binary tree onto which all binary trees are embeddable with
dilation-cost 0OC1> and expansion-cost OCN®> for some fixed

constant c.

Most of these researchers, while mapping/embedding a
graph onto a target graph, do not work under the constraint
that the son of a node of a graph should always be assigned to

a descendent of the image of that node in the target graph. It

3

should be understood that while the above constraint is
optional C(but certainly wusefuld in the parallel processing
envirconment, it is a must for the mapping of a binary tree

onto an ALU pipeline.

In this'paper, we describe a mapping algorithm which
can be used to find a 1-1 mapping of the nodes of a rooted
binary tree onto the nodes of a target binary tree, under the
constraint discussed earlier in this section. We study +the
cost of this mapping in terms of dilation—-cost and
expansion-cost, and show that it is possible to minimize one

of these costs only at the expense of an increase in the other

cost.

In Section 2, we define certain terms relevant to our
research. A mapping algorithm is described in Section 3. In
Section 4, we use a similar algorithm to find a mapping of a
binary tree onto a given ALU pipeline with different
dilation—-costs and expansion-costs. We also describe a scheme
in this section that can be used to find a minimal super tree
which contains an arbitrary number of binary trees, provided
we impose certain restrictions on the structure of the super

tree. The paper concludes with a discussion of our results in

Section 3.

[T T I

2. DEFINITIONS

dilated—-mapping

depthCRD

LLCLD

LRCLD

RRCED

RLCLD

A 1-1 mapping of the nodes of a given binary
tree onto the nodes of a target binary tree

under the following constraints:

1. The root node of the given binary tree is
assigned to the root node of target binary

tree.

2. Each son of node ¥ in the given binary
tree is assigned onto an existing descendent
of the image of T in the target binary tree
(see Fig. 1D. The edgeCi, son(i>> of the
given binary tree is said to be dilated by
an amount equal to the distance in +the
target binary tree between the images of
node 1 and sonCi{d. CNote that the
expansion—-cost of a dilated-mapping is

always zerod

distance of node kR from the root. The value
of depthlroot>=0. The maximum wvalue of

depthl{k> for 1£k=m is denoted by dmax

is true if a dilated-mapping of the left
tree of node 1 exists onto the left tree of

image of i, and false otherwise.

is true if a dilated-mapping of the left
tree of node U exists onto the right tree of

the image of i, and false otherwise.

is true if a dilated-mapping of the right
tree of node i exists onto the right tree of

the image of {, and false otherwise.
is {rue if a dilated-mapping of the right

5

dilate-leftlio

dilate-rightlio

tree of node ©t exists onto the left tree of

image of t, and false otherwise.

is true if it is impossible to determine
whether a dilated-mapping of the left

tree(i) onto left tréeCimageCiD) exists or

not unless the edge(i, leftson(idd is-

dilated and the left tree(id is mapped onto
the left treeCleftsonl(imageCiddd, and false
otherwise. Thus it will be false if either a

dilated-mapping of the left tree(id exists

onto the left treeCimageCidDd without

dilating the edgel(i, leftsonCidd, or a
dilated-mapping of the left tree(id does not
exist onto the left treeCimageCidd even if

the edge(i, leftson(idd> is dilated by an

arbitrary amount.

is true if it is impossible to determine
whether a diléted—mapping of the left
tree(id ‘onto left treeCimageCid) exists or
not unless the edge(i, leftsonCi2D is
dilated and the left tree(id is mapped onto
the right treelleftsonCimage(id3d, and false
otherwise. Thus it will be false if either a
dilated-mapping of the left tree(id existis
aonto the left treeCimageCidD without
dilating the edge(i, leftson(idd, or a
dilated-mapping of the left tree(id does not
exist onto the left treeCimage(Cidd even if
the edgeCi, leftsonCid> is dilated by an

arbitrary amount.

[Tt (N

R T LINY TR TT

3. AN ALGORITHM TO FIND A DILATED-MAPPING

We will first describe and prove a number of theorems
which will help us in designing the basic algorithm. Given the
flags: LL{leftsonCio>, RRCleftsonlido, LRCleftsonCiDD, and
RL{leftsonCi20, Theorem 1 describes conditions under which the
flag LLCiD> is true. The conditions under which the flag LLCLD
is false are discussed in Theorem 2. In Theorem 3, we discuss
conditions under which it is impossible to determine whether
the flag LL{T> is true or false unless the edgeC?,
leftsonCidd is dilated.

31 THEOREM 1

The flag LLCID is true (but not necessarily false
otherwise) if LL{leftson(io -« RR{leftsonCidd + LRCleftsonli12>-
RL(leftsonCi2> is true. Similarly RRC(iD is true (but not
necessarily falée otherwised if LL rightsondio

RRCrightsonCil2D + LRCrightsonCi>> - RLCrightsonCi2> is true.

Proof

The AND of LlLCleftson(io> and RRCleftson(ild> is true if
it is possible to find a dilated-mapping of the left tree as
well as the right tree of the left son of node ¢ onto the
respective left tree and right tree of imageCid. This implies
that a dilated-mapping of the left tree of node it onto the

left tree of image(id exists and thus LL({{D is true.

The AND of LRCleftson(io> and RL(leftson(il>> is true if
one can find a dilated-mapping of the left +tree of the
leftsonCid onto the right tree of the léftsonCimageCi)), and
of the right tree of the leftson(id onto the left tree of the
leftsonCimageCi{d>. This implies that a dilated-mapping of the
left tree of node ¢ onto the left tree of image(id exists and

thus LL{ID is true.nD

The conditions under which LL{i> is true, are shown in
Table 1. It is understocod that undef tﬁése conditions the flag
LICi> is true without (furtherd dilating the edge(t,
leftsonCidd, and thus the flags dilate-left and dilte-right

are both false.

3. 2 THEOREM 2

The flag LLCi> is false (C(but not necessarily true

otherwised if LLrightson(iD) LRCleftsonCioD +

RRCleftsonCi2D RLCleftsonCiDD is true. Similarly RRCID is

false Cbut not necessarily irue otherwised if LL rightson{ilD

LRCrightson(i>) + RRCrightson(i2o - RLCrightson(ioD is Llrue.

Proof

The AND of LlLCleftsoncCid) and LRCleftson(id> is true if
it is impossible to find a dilated-mapping of the left tree of
leftsonCid onto the left or right trée of leftsonCimage(idd.
If a dilated-mapping of the left tree of leftsonCid does not
exist onto the left or right tree of leftsonCimageCilD, tﬁen a
dilated-mapping of the left tree of node I can also not exist

and hence LLCiD is false.VSimilarly it can be argued that if

RRCLeftsonCi)) AND RiCleftson(id) is true then the flag LLCZD

is false.n

The conditions under which the flag LLC{i> is false, are
illustrated in Table 1. It is important to note from the table
that the flag LLCiD is false if a dilated-mapping of the left
tree of node ;"does not é;;é{ onto the left tree of iﬁageCiD
even if the edge(i, leftsonCil>)> is dilated by an arbitrary
’amduﬁt. Thus the flags dilate-left and dilate-right are both

false.

TABLE 1

LiCleftsonCtDl o o o o 0o 0o 0 o0 1 1 1 1 1 1 1 1

RRCleftson(idD o o o ¢ 1 1 1 1 0 O O O 1 1 1 1
LRCleftson(id> o o1 1 0 0 1 1 © O 1 1 O O 1 1
RlLCleftson(ioD o 1 0 1 0 1 O 1 O 1 0 1 O 1 O 1
LLCLD o o o1 0 O ? 1 O 2? O 1 1 1 1 1
dilate-leftdid o 0 0 0 0 0 0O 0 01 0 O 0 O O O
dilate-rightlio 0o o 0 06 06 061 0 0 0O 0O 0o 0 O o0 O

3. 3. THEOREM 3

dilate-leftCid =LL{leftson(idd - LRCilefison(io>

RRCleftsonCioDo - RLCleftsonCi JD

dilate-rightlio =LL{leflson(idd - LR(lefison{ioo

RRClefisonCioD - RL{leftsonCt 2D

Proof

The conditions under which dilate-leftsdilate-right is
true or false are illustrated in Table 1. Note that the flags
dilate-left and dilate-right are both false if LLCiD> is either
true without (further) dilating the edgelCi, leftson(idd, or a
dilatéa?ﬁapping 6f the lef£ iree(i) does not exist onto the
left tree of the imageCid even if the edgeCi, leftsonCidd is

dilated by an arbitrary amount.

The flag LL{leftson(ilD> is true if a dilated-mapping of
the left tree of leftson(il) exists onto the left tree of
leftsonCimageCidd, while RLClefison(ioD is true if a
dilated-mapping of the right tree of the leftson(id exists
onto the left +tree of the leftson(imageCid>. The flags
LRCleftsonCi2> and RR(leftson(id> are both false when a
dilated-mapping of the left tree of node ¥ onto the left treé
of imageCid does not exist, provided the edgelCi, leftson(Cid)
is not dilated. Thus whenever the flag dilate-left is true,
there exists a possibilty of fihding a dilated-mapping of the
left treeCid if the edgel(i, leftson(id) is dilated and the
left tree of node ¢ is mapped onto the left tree of the

leftsonCimageCi3d. o

It is important to note that only one flag (dilte-left or
dilate-rightd can be {rue at a time. Thus dilate-left
C(dilate-rightd is true if there éxists a possibility of LLCID
becoming true, provided the left tree of ncde ¢ is mapped onto

the left tree (right treed of leftsonCimagelidD,.

10

(TR T (T

3. 4 THE ALGORITHM

Find a trivial mepping of the given binary tree (ireell

onto the target binary tree (tree2>. For each node i at depth
s 22, the flags: LL{leftson(ioD, RRCleftson(ilo,
LRCleftson(iD>, and RL(leftson(id)d, can easily be found by
inspection. The flag LL{{> can then be found using the

following procedure:

Given LLCleftsonCid)>, RRCleftson(idd, LRCleftson(id>, and
RLleftsonCid), find if LLCiD is true Cuse Theorem 1D or false
Cuse Theorém 2). If LLCY> is neither true nor false then
either dilate-left or dilate-right (but not bothd will be true
CThecrem 3). Dilate the edge(Ci, lefison(idd and assign the
left tree of node” 1 onto the left tree of the
leftsonCimageCid) if dilate-left is true, and onto the right
tree of leftsonCimage(Cidd, if dilate-right is true. Again work
out the value of LIL{iD> from the new values of LL(leftson(ilD,
RRCleftsonCid), LRCleftson(ioD, and RLleftsonCiDD. If
dilate-left or dilate-right is still true then further dilate
the edgeCi, leftsonCid) and repeat this process until LL{ID
becomes either true C(without further dilationd or it becomes

false Cwith an arbitrary amount of dilationd.

The flags: LL{rightson(i>o, RRCrightson(il2,
LRCrightsonCi>>, and RL(rightson(i>> can also be found by

inspection and RR(iD can then be determined.

Now interchange the left tree of each node i with the
right tree and again find the flags, LiCleftsonCilD,
RRCleftsonC122, LRCleftsonCioo, and RLCleftsonCioD, by
inspection. From these flags work out the value of LR(i2>. The

flag RLCYD can be found in a similar manner.

11

Once we have the values of LL{{D, RRCI>, LRCi>, and RLCID
for each node i at depth Cdmmd— 2),the value of these flags

for each node at depth Cdmmd— 33, can be found in a similar

manner, Keep going up in treel untilr we find the
flags:LLCrootl), RRCrootl>, LRCrootl>, and RLCrooti). If
LLCrootl) -RRCroot1>+LR(rootl > RL(rootl> = is true then a

dilated—-mapping of treel onto tree2 exists.

3. 5. DiscussioN

1. For any node k of treel, the flag LL{kD> is a function of
four flags:Lllleftson{k>>, RRCleftsonCkD2,
LRCleftsonCk>>, and RLCleftsonCk>>. In order to find if
LICR> ts true Cwithout further dilationd or false Cwith
an arbitrary amount of dilation), the edgeCk, leftsonCkDD

is dilated at the most as many times as (d -
max2 maxi

For each dilation of the edge, the above mentioned four

flags are to be evaluated. Thus, in order to find the

flag LLCKD, the four flags have to be found out (d 2"
™m

ax
13 times, in the worst case.

maQax
2. The number of steps needed to evaluate the four flags:
LilleftsonCkdD, RRCleftsonCkDD, LRCleftson(kDD, and

RL{leftsonCkd>, are, at the most, four times as many as
are required to evaluate a single flag e. g.

LLlleftsonCkD)D,

3. In light of (1> and (23, the maximum number of'steps
needed to find LL{kRD will be 4Cdm - d D as many as

ax2 maxi
required to find the flag LlL{leftsonCk>>. In order to
find if a dilated—-mapping of (treel exists onto tree2, the

maximum number of steps will be 4Cd - d > times as
max2 maoxi

many as are required to find LL{lefison(rootl>. Similarly

the number of steps needed to find LL leftsonCrootl) will

i1z

[A T

again be 4Cd - d D times as many as are required to
max2 maxi

evaluate the flag Ll leftsonlleftsonlrooti>>>. Thus, in
order to find if a dilated-mapping of t{reel exists onto

treez, the algorithm will perform steps proporticnal to

oKCd - d > MM 4> M,

max2 maxt

3. 6 ExamMPLE 1

We show treel in Fig. 2Cad and tree2 in Fig. albd, with
.—7’

max2

the root node of each tree shown in bold. Note that dJd
and dmwa=4' The depth of some of the nodes of treel is also
indicated in Fig. 2Cad. A trivial mapping of treel onto tree2
is shown in Fig. 3C(b). In this mapping rootl is mapped onto
root2 and the leftson (rightson) of each node U is mapped onto

the leftson (rightson) of the image(id of treel.

For each non leaf node ¢ of treel at depth=3, the flags,
LLCg>, RRCg>, LRCQ), and RLCgD are detefmined by inspection
and are indicated with each node in the respective order (Fig.
3Cad>. Thus for =15, all the four flags are truwe and are
indicated by the pattern ‘1111’, while for @=8, both LL{g) and
RLC@> are true but RR(g> and LR(g> are both false and are
indicated by the combination ‘1001’, as shown in Fig. 3C(bD.

As the four flags for node ¢=15 are all true and @ is the
rightson of neode 7, so, according to Theorem 1, RRC7D is also
true. Thus LLC72 and RRC7D are both true as indicated in Fig.
3Cad. The four flags for node 8, which is the leftson of node
4, are also indicated in the figure. Under such conditions the
flag L1{40 is false if the edge(4, leftsonC4d) is not dilated,
but may become true if the edge is allowed to be dilated Cnote
that the flag dilate-left is true D. The flag LLC4D does,

indeed, become true when the edge(4, 83 is dilated as shown in

Fig. 4.

i3

In order to determine the flags LR and RL for nodes 4

and 7, the left tree of each node is interchanged with the

right tree, as shown in Fig. ©. The flag LRC40 is false if the

edgéc4, 8) is not dilated, but may become true if it is
diléted towards right as the flag dilate-right is ({rue (see
Fig. BCb>>. The LRC4D comes out to be false, as shown in Fig.
6. The four flags for nodes 2 and 3rére indicated in Fig. 7.
In order to find LLCrooti>, the edge(l, 2> is dilated various
times, as shown in Fig. 8, 9, 10, and 11. Both the flags
LLCrootl> and RRCrootl)> come out to be true as indicated in
Fig. 12. Thus, it is possible to find a dilated-mapping of

treel onto treel.

14

4. APPLICATIONS

Definitions:

dilated—-nappingCkd

super—tree

best ~-mappingCko

is a dilated-mapping of a given binary
tree onto a target binary tree in which
the dilation-cost is equal to or leés
than k. Remember, that the expansion-cost
of a dilated-mapping is always zero. A
dilated—mapping(kf) is called a minimal
dilated-mapping if it is not possible to
find a dilated—mappinngZD with h2< k{

is a binary tree with respect to a set of
binary trees (known as a tree setd if it
is possible to find a dilated-mapping of
each binary tree of the set onto it. A
super~tree containing k nodes is a
minimal super-tree if itris not possible
to find a super—-tree having nodes less

than k.

is a mapping of the nodes of a given
binary tree onto the nodes of a target
binary tree under the following

constraints:

1. The root of the given binary tree is
assigned to the root of the target

binary tree.

2. Each son(id, in the given binary
tree, =~ is assigned onto a
descendent(imageCid3> in the target
binary tree. Note that the
descendent(image(id> may or may not

exist.

15

3. The expansion-cost is minimal and the

dilation-cost is less than or equal to

k.

4 1 FINDING A MINIMAL DILATED-MAPPING

If a dilated-mapping of treel onto treeZ exists wherein
each edge of treel 1is dilated by no more than k times, then
the algorithm of Section 3 will always find a
dilated-mappingCk). The value of k may vary from zero, when it

is possible to find a mapping of treel onto tree2 without any

dilation, and to (d - d D>, when the amount of dilation
max2 maxi
is maximum. The minimal dilated-mapping can be found by making
a binary search in the range O=k=(d - d D, wusing the
" max2 maxi

algorithm of Section 3 to find the dilated-mapping(Rkd for

which k is minimum.

4 2. FINDING A MiNIMAL SUPER 1REE

The problem of finding a minimal super—tree with respect
to a set of binary trees, is difficult to solve in general. In
practical situations, however, it is possible toe find a
minimal super-tree using the algorithm described in Section 3
as follows: We enumerate all non isomorphic rooted binary
trees of a given depth. For each such binéry tree, we check if
it is péssiglerto find a diiated—mapping of each member binary
tree of the tree set onto the selected binary tree; Tﬁe binary
tree which passes this test and which contains minimum number

of nodes, will be the minimal super-tree with respect to the

tree—set.

Unfortunately, the number of non isomorphic rooted binary
trees is prohibitively large for depths of any practical

interest. A practical implementation of a super-titree on a

i6

bl m

printed circuit board, however, imposes further constraints on
the structure of the super—-tree and limits the number of non
isomorphic rooted binary trees. A printed circuit board, for
example, is usually stuctured in the form of a NxN grid, where

@ach node of the super—-tree is mapped onto a grid point;

Keeping in view the complexity, size, and input-output
requirements of each node of the super-tree Ci. e. the ALU
pipeline>, the value of N is no larger than 10, provided the
super-tree is implemented on a single printed circuit board.
Out of the resulting non isomorphic rooted binary trees, the
minimal super-tree can be found in a reascnable amount of
time. In é NxN grid, for example, the number of chips at
depth=d, are proportional to d and the total number of nodes
in a binary tree will bDbe ocd’>. The resulting number of
nonisomorphic binary trees will be an exponential function of

the size of the grid which is N

4, 3. FINDING A BEST-MAPPING

We have already discussed techniques to find a
dilated-mapping C(provided such a mapping exists) of a given
binary tree onto a target binary tree with minimum
dilation—cost Cremember that the expansibn—cost of a
dilated-mapping is always ze;o). If such a mapping does not
exist, or if its dilation—cost is prohibitively large, then we
are left with the only option of finding a best-mapping(kd of
the given binary tree onto the target binary tree. Note, that
the best-mappingCk) has a minimal expansion-cost and a

dilation-cost equal to or less than k.

The algorithm that we describe here, can be used to find
best—mappings'of a binary tree onto another binary tree with
varying dilation-costs and expansion-costs. We show that it is

possiblejto minimize one of these costs only at the expense of

17

increase in the other. Using this information, one can find

the best possible compromise between these two costs.

Definitions:

BLL IO

BRRC 1D

BLRCyD

BRLC YO

dilate~-leftli>

dilate-right(id

THEOREM 4

is the expansion-cost of the best-mapping of
the left treeCid onto the left
treeCimageCidD.

is the expansion-cost of the best-mapping of
the right treeCid onto the right
treeCimageCid)D.

is the expansion-cost of the best-mapping of
the left treeCtd = onto the right
treeCimageCi)Qt)

is théré;gégsion—cost of the best-mapping of
the right treeCid onto the left
treeCimage(id.

is true if it is impossible to determine the
best-mappingCkd of left +tree(id onte the
left treeCimageCidD unless the edge(t,
leftsonCi2) is dilated and the left tree(id
is mapped onto the left

treeCleftsonCimage(122D,

is true if it is impossible to determine the
best-mappingCk> of left tréeCiD onto the
left treeCimageCidD unless the edge(t,
leftson(i3) is dilated and the left treeCid
is mapped onto the right
treeCleftsonCimage(idl),

The flag dilate-left(id is true if and only if:

BRLCleftson(iD>D> < BRRCleftson(idd and
BLL leftson(ioD> < BLRCleftsonCido

15"

oy

e

I

The flag dilate-rightCid is true if and only if:
BRLCleftsonCid> > BRRCleftsonCid> and
BLLCleftsonCi2) > BLRClefison{iod

Prodf

If [BLlCleftson(id> + BRLleftson(id2] 1is less than
[(BLLCleftsonCroD + BRRCleftson(i>22? as well as
[BLRCleftson(i>> + BRL(leftson(i>2], then it is not possible
to find a best-mappingCkd of ﬂhe left tree(id onto the left
treeCimageCid> unless the edgeCi; leftsonCid) is dilated and
left tree(id is mapped onto the left treel(leftsonCimageCiddD.
Under such- conditions, there always exist a possiblity of
reducing the expansion-cost of a mapping of left tree(id onto

the left treel(imageCid), provided the edge(i, leftsonCidd is
dilated.o

The conditions under which the flag
dilate-left(id/dilate-rightCd is true or false are,
illustrated in Table 2. It is important to note that only one

flag i. e. dilate-left or dilate-right is true at a time.

THEOREM 5

BLLCleftsonC(12> + BRRCleftisonCidD if
BRLCleftsonCi)> 2 BRRCleftsonCidD
and BlLlCleftson(id) £ BLRCleftsonCidD

BLLCLD

BLRCleftsonCid> + BRL(Cleftson(idD if .
BRILCleftsonCi2D> < BRR(leftsonCidD

and BLLCleftson(CiDD 2 BLR(CleftsonCido

Proof

If [BRLCleftsonCid> P BRRCleftsonCidD] and -
[BLLCleftsonCido =X éLRCleftsonCiD)] or [BRLleftsonCiD2> =
BRRCleftsonCi22] and [BLLCleftsonCiD)fZ BLRCleftsonCz22]1 then

19

dilate~left(id and dilate-right{i{d are both false, as shown in
Table 2. Under such conditions, it is possible to determine
the best-mapping(kd of the 1left +treeCid onto the left
treeCimageCid) without dilating the edgeli, leftsonCidd. The
expansion-cost of the best-mapping(kRd of the left tree(id onto

left treeCimageCidl is given below.o

expansion—cost = min[[BLL{leTtson(id> + BRRCleftsonCidDl,
[BLRCleftson(idD> + BRLCleftson(i221]]

THE ALGORITHM

The algeorithm to find a best-mappingCkd of a given binary
tree onto a target binary tree, is similar to the algorithm
described in Section 3. 4, except that the wvariables BLL, BRR,
BLR, and BRL are no longer true or false, but are integers.
Given BLL{leftson(i2>, BRR(lefison(id2, BLR(leftsonCid>, and
BRLCleftson(idD, we can find BLL{TD> using Table 2, provided
dilate-left(?) and dilate-right(?) are both false. Dilate C(but
not more than kR timesd the edge(i, leftsonCidd and assign the
left tree(i) onto the” left treeCleftitsonCimageCidl3, if
dilate;léft is | true, | and onto the right

treeCleftsonCimageCitdd, if dilate-right is true.

The rest of the algorithm 1is exactly the same as
described before. The expansicon-cost of the best-mappingCk> of
the given binary tree onto the target binary tree, will be
min[[BLLCleftsonCrootd O+ BRRCleftsonCrootdd1,
[BLRCleftsonCrootd> + BRLCleftsonCrootl>]]. The algorithm
performs the same number of steps as before in order to find
the best-mapping(k) of a given binary tree onto a target

binary tree

20

ey

Hownoy

TaBLE 2

dl dr

BLLCiD
BLLC j>=BLRC D BRLC 7>=BRRC j BLLC j>+BRRC 5D o) 0
BLLC jO>=BLRC jD BRLC jO>BRRC 52 BLLC j>+BRRC 5D o) o
BLLC j>=BLRC j> BRLC jO<BRRC jO BLRC jO+BRLC jD 0 o
BLLC jO>BLRC 5D BRLC j>=BRRC 72 BLRC j>+BRLC 3D o o
BLLC 7>>BLRC jD BRLC 7> >BRRC 7D ? o 1
BLLC jO>BLRC 72 BRLC 7> <BRRC 7D BLRC j>+BRLC 5> o 0
BLLC j><BLRCj> BRLC j>=BRRC 7> BLLC jO+BRRC 7D 0 o)
BLLC jO><BLRC j> BRLC j>>BRRC j BLLC j>+BRRC 1D o) o
BLLC jO<BLRC j> BRLC jO<BRRC 7> ? 1 o)

J=leftsonCio

dli=dilate—-leftlio

21

dr=dtlate-rightdiio

-

ExAMPLE 2

Let us find a best-mapping(kd) of treel of Fig. &2Cad onto
tree2 of Fig. a2Cbd for k = O, 1, 2, and 3. Fig. 13 shows a
best-mappingC0> of treel onto tree2. The val ues of BLL, BRR,
BLR, and BRL are all indicated with some nodes in the

respective order. The expansion-cost of the best-mappingCOd is

shown to be 7. We show a best—mapﬁing(i) of treel onto tree2
in Fig. 14. The expansion-cost of this mapping is only 1. A
best-mapping(2) of (reel onto (ree2 does not produce any
better results and is, therefore, not shown. A best-mappingl(3>
is shown in Fig. 12. Its expansion-cost is zero and thus it is

a dilated-mappingC(3) of treel onto treez.

The above expansion-costs and corresponding
dilation—-costs are plotted in Fig. 15. Note that when the
dilation-cost is zero, the expansion-cost is maximum and is
equal to 7. On the other extreme, when the dilation-cost is 3,
the expansion-cost 1is minimum equal to zero. When the
dilation-cost is allowed to increase from zero to 1, the
expansion-cost reduces dramatically from 7 to 1, but when the
dilation-cost is changed from 1 to 2, the expansion-cost does

not reduce.

The best possible compromise between dilation—cost and

expansion-cost <c¢can now be found. For example, if the
expansion-cost, corresponding to dilation-cost=0, is
unacceptable, and 1if the dilation-cost corresponding to

expansion-cost=0, is prohibitively 1large, then the best
solution is to allow a dilation-cost of not more than 1. The

corresponding expansion-cost will also be 1 in this example.

22

R YL

AT T RN

L

5. CONCLUSIONS.

We have described an algorithm which can be used to find
a mapping of a given binary tree onto a target binary tree,
provided that the son of a node of the‘given binary tree is
assigned to a descendent of the image of that node in the
target binary tree. The cost of the mapping is expressed in
terms of dilation-cost and expansion-cost. We have shown that
it is possible to minimize one cost of mapping only at the
expense of increase in the other. It is possible to extend
this approach for k-ary trees (provided k is smalld, although
it will be difficult to apply this technique to graphs other

than trees.

An scheme to find a minimal super-tree which contains an
arbitrary number of binary trees, is also discussed. This
scheme is feasible, provided we impose certain restrictions on

the structure of the super-iree.

The algorithm that we have described in this paper, is
equally applicable in a parallel processing environment. The
problem here is to add minimum number of processors to the
already configured processor tree, in order to match the
program binary tree with the machine architecture. If,
however, the change of hardware is not a feasible option, then
we should assign more than one program nodes to a processor
node so that the reduced program binary tree can nicely fit
the intended tree machine. The problem, 1in general, is
difficult to solve and is an open challenge for pecople working

in this field.

23

6. REFERENCES

{13 P. B. Schneck, D. Austin, S. L. Squires, J. Lehmann,
D. Mizell & K. Wallgren, "Parallel Processor Programs in the
Federal Government.’® IEEE Computer, vol. 18, No. 8, pp. 42-86,
June 1985.

(21 D. N. Nosenchuck and M. G. Littman, "The Coming Age of
Parallel Processing Supercomputer,’” Presented alt the 23rd

Annual Space Conference, April 1986.

[3] S. Bokhari, "On the Mapping Problem," IELE Tran.
Comput. ,vol. C-30. No. 3, 1980.

[4] M. A. Igbal, "A Heuristic Algorithm for the Mapping
Problem, M. Sc. Dissertation, Department of Electrical
Engineering, Engineering University Lahore, Pakistan, April

1983.

{51 F. R. K. Chung, R. L. Graham & D. Coppersmith, "On
Tree’s Containing all Smaller Trees," Proceedings of the

Fourth International Graph Theory Conference, 1978.
[6] J. W. Hong, K. Mehlhorn, and A. L. Rosenburg, "Cost

Trade-Off’s in Graph Embeddings with Application,” J. A4ss.
Comput. Mach., vol. 30, No. 4, Oct. 1983.

=24

Ll

\r‘

25

image(i)

rightson(i)
leftson(i) . :;E;e‘;'

leftson(image(i))

rightson (image(i))

grandson(image(i)) grandson(image(i))

Fig_ 1 A given binary tree shown in black while the target binary tree
is shown in grey. Node i of the given binary tree is mapped onto
an image(i) of the target binary tree. In a dilated-mapping of a
binary tree onto another binary tree, each son(i) is mapped onto
either an existing son or a descendent (e. g. a grandson) of image(i)

in the target binary tree.

26

(b)

Fig. 2 (a) treel and (b) tree2. The root node of each binary tree
Is shown in bold. The depth of some nodes of tree | is also
indicated in square brackets, thus depth of node S is 2.

nom !

|

27

(a)

(b)

Fig. 3 (a) tree1 & (b) a trivial mapping of tree1 onto tree2. For each
nonleaf node q of tree 1 at depth=3 the flags LL, RR, LR, & RL
are indicated with each node in the respective order. When q
is equal to 8, for example, LL & RL are both true while RR & LR

are false as indicated in (a).

28

4@ al
(b) /
4@ 1@,
\ B L)
) 0 O 0O O =@ 1@
'é/ &@ 0 0O &’/\!%.
4 \fs’ O O e
() @ @ O O

Fig. 4 The flag LL(4) is false if the edge(4, 8) is not dilated but becomes
true when the edge is dilated towards left once as shown in bold
in (b). The flag RR(4) is already true.

\"’IH |

29

(a)

16
1 @

(b) l”’:"”" 6!\\\\\\

1101

£@ 0110 €1 W U B 2@ 1111 2@
2 G 29 9.\9. ® Q
o J O)
() (J O C
O O C

Fig. 5 In order to determine the flags: LR & RL for nodes 4 & 7, we
interchange the left tree of each node with its right tree as shown
in (b). The flag LR(4) is false if the edge(4, 8) is not dilated but may

become lrue if it is dilated towards right.

(a)

1101 A VO 00 & SOSTTTI <&
X \.w “’l Y 0
- $ 0 O O e
@, () O O
O O J

Fig. 6. The edge(4,8)is dllated towards right once, indicated in bold,
as shown in (b). The resulting value of the flag LR(4) is false

as shown in (a).

L1

31

Fig. 7 The four flags: LL, RR, LR, & RL for nodes 4, 5, 6 and 7 are
| indicated in the respective order in (b). The resulting four
flags for nodes 2 and 3 are shown in (a).

32

(a)

(b) /

.y @
) O @, Q\.s
) (]} ® O O
d b g O O

Fig. 8 Inorder to determine the flag LL{root1)/RR(root1) the
edge(1,2)/(edge(1,3)) is dilated as shown in bold in (b).

33

(a)

(b) / 'l\\.,

1} \
() () ®)
/0@‘ D \Oa g/ \.9 ./ \.. 1111
1111 (4 o 1111 d o N
o \‘90 @ ‘e

Fig. 9 The flags LL and RR for nodes 4 as well as 7, are both true as
shown in (a). The actual dilated-mapping is shown in (b) with
each dilated edge indicated in bold.

(a)

(b) ’ /

@, &)
/n \; ““ 0»
N\ S S
X 0 O AR e 111
1111 gy D111) ./\.
/ &
’o/ oudR e e

i

Fig. 10 Al the four flags: LL(3), RR(3), LR(3), & RL(3) are shown in (a).
The dilated-mapping for the right tree of node 1 is shown in (b).

P

(a)

(b) \

Y / @ @,\ (h
6 O 0 9 o/ \o
N\ 7\
O] (¢ @, ®
/"' /\ &)
;. N Y@ O O
"0 \q,. W O O

Fig. 11 The edge(l, 2) is dilated thrice as shown in (b). The flag LL(2)1s
thus false while RR(2) is true as indicated in (a).

(a)

(b) /

£ Q O
"/’ O 9‘/ \”‘ o/\o
TR A N AN
./ ./ \. J ; O 0O

o

,../- \Q. .! }g }g

Fig. 12 Both LL{root) and RR(root) are true as shown in (a). Thus
it is possible to find a dilated-mapping of tree 1 onto tres?
which i shown in (b).

u M

(a)

2@ KA

(b)

Fig. 13 A best-mapping(0) of tree1 onto tree2. The values of BLL, BRR, BLR,
& BRL are also indicated with some nodes in the respective order in

(a). The expansion-cost of the mapping is 7.

(a)
4
4
8
ke
% &)
16 17

(®) , /

y 4 \"’
(¥ ® \e.
Y Q.
VN
g o ARe\

38

Fig. 14 A best-mapping(1) of tree] onto tree2. Each dilated edge is shown

in bold. The expansion-cost of the best-mapping(1)is 1.

Expansion-cost

\ Ditation-cost

0 1 2 3 4

Fig. 15 Expansion-cost, corresponding to best-mapping(k) of treel

onto tree2, is plotted against dilation-cost.

MN Report Documentation Page

SCACe AGTRl 0N

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-181980
ICASE Report No. 90-6

4. Title and Subtitle 5. Report Date

EFFICIENT ALGORITHMS FOR DILATED MAPPINGS January 1990

OF BINARY TREES 6. Performing Organization Code
7. Author(s)) 8. Performing Organization Report No.
90-6

M. Ashraf Iqbal

10. Work Unit No.

505-90-21-01
9. Performing Organization Name and Address
Institute for Computer Applications in Science 11. Contract or Grant No
and Engineering , NAS1-18107

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

Contractor Report

15. Suppiementary Notes

Submitted to IEEE Trans.
Parallel & Distribute
Computing .

Langley Technical Monitor:
Richard W. Barnwell

Final Report

16. Abstract

We address the problem of finding a 1-1 mapping of the vertices of a binary tree onto those of
a target binary tree such that the son of a mode on the first binary tree is mapped onto a desendent
of the image of that node in the second binary tree. There are two natural measures of the cost of
this mapping, namely the dilation cost i.e. the maximum distance in the target binary tree between
the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is
defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure
a 1-1 mapping. We describe an efficient algorithm to find a mapping of one binary tree onto another.
We show that it is possible to minimize ome cost of mapping at the expense of the other.

This problem arises when designing pipelined Arithmetic Logic Units for special purpose com—
puters. The pipeline is composed of ALU chips connected in the form of a binary tree. The operands
to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the
results up to their parents. The final result is available at the root. As each new application
may require a distinct nesting of operations, it is useful to be able to find a good mapping of a
new binary tree over existing ALU tree. Another problem arises if every distinct required binary
tree {s known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal su-
pertree that contains all required binary trees.

17. Xey Words (Suggested by Author(s)) 18. Distribution Statement

Assignment, dilation, embedding, mapping
problem, parallel processing, pipeline 59 - Mathematical and Computer
Sciences (General)

Unclassified - Unlimited
19. Security Classif. {of this report) 20. Security Classif. {(of this page) 21. No. of pages 22. Price
Unclassified Unclassified _ 41 A03

NASA FORM 1828 OCT 88

NASA-Langley, 1990

